РОССИЙСКАЯ АКАДЕМИЯ НАУК

Самарский научный центр Институт экологии Волжского бассейна

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ГЕРПЕТОЛОГИИ И ТОКСИНОЛОГИИ

СБОРНИК НАУЧНЫХ ТРУДОВ

ВЫПУСК № 10

Тольятти 2007

Сравнительная характеристика периферической крови змей Волжского бассейна

A.C. Воробьева Пермский государственный педагогический университет, г. Пермь (Россия): vorobeanna@yandex.ru

При исследовании крови рептилий анализируются морфологические и биохимические параметры, которые характеризуются значительными индивидуальными, половыми, возрастными, сезонными и видовыми. Так, количество лейкоцитов и эритроцитов у различных видов змей Предуралья колеблется в зависимости от времени года и пола. Также выявлены половые и возрастные отличия в лейкоцитарной формуле и уровне гемоглобина у степной гадюки Vipera renardi (Воробьева и др., 2006; Воробьева, Ганщук, 2007; Ганщук, Литвинов, 2004). Величина эритроцитов может служить хорошим показателем адаптивной способности энергоресурсов и, прежде всего, способности к быстрому передвижению (Красильников, 1973), при этом различные параметры эритроцитов кореллируют с возрастом животных.

Особые клетки эритроцитарной группы — випроциты — имеют не только ядовитые змеи в Средней Азии и на Кавказе (Перевалов, 1973), но и некоторые виды рептилий Волжского бассейна, в том числе ящерицы и болотные черепахи (Большакова, Бакиев, 2005). Кровь рептилий, как наиболее реактивная ткань внутренней среды, отображает филогенетические черты и может быть использована в качестве одного из систематических признаков (Красильников, 1973). В данной статье представлены результаты анализа показателей периферической крови у ужа обыкновенного *Natrix natrix*, гадюки обыкновенной *Vipera berus* и гадюки степной *Vipera renardi*.

Материал был получен из Кишертского, Кунгурского и Уинского районов Пермского края, а также из Карагалинского района Оренбургской области. Изучались лейкоцитарная формула, количество эритроцитов и лейкоцитов, размеры эритроцитов, уровень гемоглобина и глюкозы. Кровь для анализа брали из верхнечелюстной вены. Количество эритроцитов и лейкоцитов подсчитывали в камере Горяева. Содержание гемоглобина определяли гемометром Сали. Определение содержание глюкозы в крови проводилось системой экспресс-контроля One Touch Basic Plus. Мазки окрашивали по Романовскому-Гимза. Полученные результаты сведены в табл. 1–3.

При сравнении показателей крови 3 видов змей, обитающих в Волжско-Камском крае, полученные следующие результаты. В лейкоцитарной формуле обыкновенного ужа и обыкновенной гадюки есть различие только по двум типам лейкоцитов: лимфоцитов на 6,6% больше у обыкновенного ужа (t = 2,54, P < 0,05), базофилов на 3,6% больше у обыкновенной гадюки (t = 2.58, P < 0.05). Достоверны различия между двумя этими видами по количеству эритроцитов в крови: у обыкновенного ужа их больше на 0,1 млн. ($t=2,35,\ P<0,05$). Также достоверны отличия по размерам эритроцитов: у ужа обыкновенного больше длина эритроцитов на 0.4 мк (t = 4.1, P < 0.001), у обыкновенной гадюки больше их ширина на 1.5мк (t = 15,7, P < 0,001). В лейкоцитарной формуле обыкновенного ужа и степной гадюки также заметны отличия по двум типам лейкоцитов: моноцитов больше у обыкновенного ужа на 22,0% ($t=3,0,\ P<0,01$). Гетерофилов на 13,0% больше у степной гадюки (t = 4,0, P < 0,001). У обыкновенного ужа больше длина эритроцитов, чем у степной гадюки – на 1,5 мк ($t=5,06,\ P<0,001$). По количеству лейкоцитов и эритроцитов, содержанию гемоглобина достоверных отличий не выявлено. При сравнении лейкоцитарных формул обыкновенной и степной гадюк обнаружены отличия только по двум типам лейкоцитов. У обыкновенной гадюки больше моноцитов на 16,4% (t = 2,21, P < 0,05), а у степной больше гетерофилов на 10.9% ($t=3.17,\ P<0.01$). Размеры эритроцитов обыкновенной гадюки больше: длина — на 1,1 мк (t = 2,7, P < 0,05), ширина — на 1,0 мк (t = 3,4, P < 0,05) 0,01) (табл. 1).

Сравнение половых отличий (табл. 2). У обыкновенного ужа между самцами и самками выявлено отличие только по количеству моноцитов: у самок на 19,0% больше, чем у самцов ($t=2,36,\ P<0,05$). Есть половые

различия в содержании гемоглобина: у самок на 1,0 г% больше ($t=2,5,\,P<0,05$). У самок эритроцитов на 0,3 млн. больше ($t=2,67,\,P<0,05$). Их длина на 0,7 мк ($t=2,31,\,P<0,05$), чем у самцов, а ширина – на 1,3 мк ($t=4,06,\,P<0,001$). У **обыкновенной гадюки** между самками и самцами выявлено отличие только по содержанию гетерофилов: у самцов их больше на 4,7% ($t=2,48,\,P<0,05$). По остальным типам лейкоцитов отличий нет. Так же не обнаружено достоверных отличий по количеству и размерам эритроцитов, количеству

Таблица 1 Показатели периферической крови трех видов змей Волжско-Камского края

Показатели крови		Обыкновенный уж (n = 73)	Обыкновенная гадюка (n = 80)	Степная гадюка (n = 6)
Лейкоцитарная формула, %	Лимфоциты	53,0±1,84	46,4±1,86	47,0±0,74
	Моноциты	27,0±2,11	21,4±2,03	5,0±0,09
	Базофилы	10,0±0,96	13,6±1,05	14,0±0,33
	Гетерофилы	Гетерофилы 10,0±0,92		23,0±0,34
	Эозинофилы	12,0±1,23	11,5±1,40	11,0±0,10
Эритроциты, млн.		$1,1\pm0,04$	1,0±0,04	_
Лейкоциты, тыс.		14,0±1,41	11,7±0,99	_
Размеры эритроцитов	Длина, мк	15,6±0,10	15,2±0,30	14,1±0,10
	Ширина, мк	9,6±0,10	11,1±0,20	10,1±0,10
Гемоглобин, г%		6,0±0,31	6,1±0,39	_
Глюкоза, ммоль/л		2,6±0,17	2,4±0,29	_

лейкоцитов, содержанию гемоглобина и глюкозы. Из всех показателей, между черной (n=10) и светлой (n=70) морфами, достоверны отличия только по количеству лимфоцитов, которых на 12,7% больше у гадюк черной морфы ($t=2,37,\,P<0,01$).

У степной гадюки отмечены достоверные половые отличия по следующим типам лейкоцитов: у самцов достоверно больше моноцитов на 1,0% ($t=3,3,\ P<0,05$), базофилов на 11,0% ($t=22,9,\ P<0,001$) и гетерофилов на 11,0% ($t=18,6,\ P<0,001$), у самок достоверно больше лимфоцитов на 26,0% ($t=22,2,\ P<0,001$). По количеству эозинофилов достоверных половых отличий нет. Также отсутствует достоверная разница по размерам эритроцитов.

Сезонные отличия у обыкновенного ужа (табл. 3). При сравнении сезонов весна-лето, выявлены достоверные отличия по четырем типам лейкоцитов. Моноцитов больше летом на 20,0% (t = 4,51, P < 0,001). Весной больше базофилов на 7,0% (t = 3,22, P < 0,01), гетерофилов – на 5,0% (t = 4,51, P < 0,001).

2,24, P < 0,05) и эозинофилов — на 8,0% (t = 2,54, P < 0,05). Летом лейкоцитов больше на 4,0% (t = 3,14, P < 0,01).

Эритроцитов достоверно больше — на 0,15 млн. ($t=7,73,\ P<0,001$) — летом, чем осенью. Лейкоцитов также больше на 11,0 тыс. летом ($t=4,93,\ P<0,001$).

Сравнение весенних и осенних данных показало, что весной больше базофилов на 9,0% ($t=4,00,\,P<0,001$), гетерофилов – на 7,0% ($t=3,39,\,P<0,01$) и эозинофилов – на 7,0% ($t=2,12,\,P<0,05$). Моноцитов больше осенью на 21,0% ($t=4,39,\,P<0,001$). Весной больше эритроцитов на 0,2 млн. ($t=2,28,\,P<0,05$).

Таблица 2 Половые особенности периферической крови трех видов змей Волжско-Камского края

Показатели крови		Обыкновенный уж		Обыкновенная гадюка		Степная гадюка	
		Самки (n = 14)	Самцы (n = 59)	Самки (n = 28)	Самцы (n = 48)	Самки (n = 12)	Самцы (n = 14)
ла, %	Лимфоциты	49,0±3,24	53,0±2,14	47,1±3,16	46,7±3,36	65,0±0,01	39,0±0,14
Лейкоцитарная формула,	Моноциты	43,0±2,95	24,0±2,37	20,6±3,93	20,4±2,35	4,0±0,04	5,0±0,03
рная ф	Базофилы	7,0±1,74	10,0±1,10	14,5±1,54	14,0±1,46	7,0±0,05	18,0±0,05
оцитар	Гетерофилы	7,0±1,43	10,0±1,08	9,6±0,89	14,3±1,39	16,0±0,05	27,0±0,06
Лейк	Эозинофилы	15,0±3,57	11,0±1,27	9,4±2,19	12,3±1,90	10,0±0,03	11,0±0,05
Эритроциты, млн.		1,3±0,06	1,0±0,04	1,0±0,12	1,0±0,04	_	_
Лейкоциты, тыс.		17,0±3,32	13,0±1,51	14,1±2,26	11,2±1,10	_	_
Размерн		16,2±0,22	15,5±0,15	14,5±0,50	15,6±0,37	14,5±0,01	14,6±0,01
эритро- цитов	Ширина, мк	10,6±0,29	9,3±0,15	10,5±0,50	11,4±0,26	10,5±0,01	10,6±0,01
Гемоглобин, г%		7,0±0,63	6,0±0,36	6,6±0,89	5,8±0,40	_	_

Сезонные отличия у обыкновенной гадюки. Весной, по сравнению с летом, больше гетерофилов на 10,9% ($t=6,62,\,P<0,001$) и эозинофилов на 8,7% ($t=2,93,\,P<0,01$). Летом больше моноцитов на 17,4% ($t=4,73,\,P<0,001$). Весной на 0,3 млн. больше эритроцитов ($t=3,17,\,P<0,01$).

В сравнении сезонов лето-осень, отмечены различия в лейкоцитарной формуле. Летом больше лимфоцитов на 9,8% ($t=2,87,\,P<0,01$). Базофилов больше на 10,5% ($t=2,72,\,P<0,01$), а гетерофилов на 6,8% ($t=3,16,\,P<0,01$)

0,01). Содержание эозинофилов выше на 2,6% (t=4,55, P<0,001). Осенью достоверно больше моноцитов на 26,9% (t=2,87, P<0,01).

В сравнении сезонов весна—осень также существуют различия. Весной больше базофилов на 11,8% ($t=2.8,\ P<0.01$) и гетерофилов на 17,7% ($t=4.77,\ P<0.001$). Осенью больше моноцитов на 44,3% ($t=21.1,\ P<0.001$). По остальным типам лейкоцитов различий нет. Весной также больше эритроцитов на 0,4 млн. ($t=3.85,\ P<0.001$).

Таким образом, существуют видовые различия по нескольким типам лейкоцитов и по количеству и размерам эритроцитов. Наблюдаются внутривидовые половые и сезонные отличия.

Таблица 3 Сезонные показатели периферической крови обыкновенного ужа и обыкновенной гадюки

Показатели		Весна		Лето		Осень	
		Обыкно- венный уж (n = 38)	Обыкно- венная гадюка (n = 27)	Обыкно- венный уж (n = 19)	Обыкновенная гадюка $(n = 47)$	Обыкно- венный уж (<i>n</i> = 16)	Обыкно- венная гадюка (n = 6)
Лейкоцитарная формула, %	Лимфо- циты	54,0±2,76	46,4±3,15	52,0±2,81	47,5±2,50	50,0±4,14	37,7±5,28
	Моно- циты	14,0±2,63	5,5±0,50	34,0±3,43	22,9±2,78	35,0±4,27	49,8±4,09
	Базо- филы	13,0±1,39	14,8±1,95	6,0±1,32	13,5±1,38	4,0±1,34	3,0±0,25
	Гетеро- филы	12,0±1,25	19,2±1,72	7,0±1,92	8,3±0,76	5,0±1,30	1,5±0,12
	Эози- нофилы	15,0±2,14	17,1±2,70	7,0±1,19	8,4±1,58	8,0±1,13	11,0±4,62
Эритроциты, млн.		1,2±0,04	1,1±0,03	1,1±0,01	0,8±0,10	1,0±0,07	0,7±0,01
Лейкоциты, тыс.		12,0±0,96	12,2±1,32	22,0±6,47	9,5±1,67	11,0±2,26	13,8±2,56
Размеры эритроцитов, мк	Длина, мк	15,8±0,30	15,7±0,30	15,5±0,10	15,3±0,40	15,9±0,20	15,2±0,40
	Шири- на, мк	9,5±0,30	11,1±0,25	9,7±0,23	11,3±0,30	9,6±0,28	11,0±0,30
Гемс	оглобин, г%	6,0±0,42	5,6±0,52	7,0±0,39	7,1±0,88	7,0±1,10	6,7±0,36

Отметим, что в крови трех исследованных видов змей есть випроциты. Причем для крови рода *Vipera* характерно значительное их количество, випроциты встречаются регулярно и небольшими группами. В крови рода *Natrix* встречаются одиночные випроциты и гораздо реже, чем в крови змей рода *Vipera*.

СПИСОК ЛИТЕРАТУРЫ

Большакова О.Е., Бакиев А.Г. Випроциты в крови пресмыкающихся Волжского бассейна // Актуальные проблемы герпетологии и токсинологии: Сб. науч. тр. Вып. 8. – Тольятти, 2005. – С. 5–7.

Воробьева А.С., Ганщук С.В., Литвинов Н.А. Характеристика периферической крови степной гадюки *Vipera renardi* // Актуальные проблемы герпетологии и токсикологии: Сб. науч. тр. Вып. 9. – Тольятти, 2006. – С. 28–32.

Воробьева А.С., Ганщук С.В. Сезонные изменения периферической крови у гадюки обыкновенной (*Vipera renardi*) и ужа обыкновенного (*Natrix natrix*) в Предуралье // VI Молодежная науч. конф. Ин-та физиологии Коми НЦ УрО РАН: Тез. докл. – Сыктывкар, 2007. – С. 24–26.

Ганщук С.В., Литвинов Н.А. Характеристика некоторых показателей змей Приуралья // Актуальные проблемы герпетологии и токсикологии: Сб. науч. тр. Вып. 7. – Тольятти, 2004. – С. 35–37.

Красильников Е.Н. О возможности использования показателей клеток крови рептилий для разрешения некоторых вопросов их систематики и филогении // Вопросы герпетологии. – Л.: Наука, 1973. – С. 106–107.

Перевалов А.А. Новое исследование крови змей // Вопросы герпетологии. – Л.: Наука, 1973. – С. 189–190.