Категория: Литература по земноводным
Подкатегории:
folder_green0Сибирский углозуб Salamandrella keyserlingii
Подкатегории: 0
Файлы: 34
folder_green1Тритоны Lissotriton vulgaris и Triturus cristatus
Подкатегории: 0
Файлы: 51
folder_green2Краснобрюхая жерлянка Bombina bombina
Подкатегории: 0
Файлы: 23
folder_green3Обыкновенная чесночница Pelobates fuscus
Подкатегории: 0
Файлы: 18
folder_green4Обыкновенная жаба Bufo bufo
Подкатегории: 0
Файлы: 24
folder_green5Зеленая жаба Bufotes viridis
Подкатегории: 0
Файлы: 24
folder_green6Обыкновенная квакша Hyla arborea
Подкатегории: 0
Файлы: 2
folder_green7Бурые лягушки Rana arvalis и Rana temporaria
Подкатегории: 0
Файлы: 114
Downloads: 59

Вершинин В. Л., Вершинина С. Д. // Успехи современной биологии, 2013, том 133, № 5, с. 495–501

Анализ рассмотренных экофизиологических особенностей четырех видов лягушек семейства Ranidae (озерной, травяной, остромордой, сибирской лягушек) показал, что по целому ряду параметров наблюдаются различия между фенотипом striata, характеризующемся наличием дорсомедиальной светлой полосы (доминантный аллель) и бесполосыми животными (рецессивный аллель). Генетическая детерминированость физиологической специфики и, в целом, индивидуальной аккомодации существенно влияет на специфику адаптивного потенциала сравниваемых видов. Установлены различия в скоростях физиологических процессов полосатых и бесполосых животных на примере наиболее полиморфных лягушек – остромордой и озерной. Для мономорфных видов – бесполосых у травяной и полосатых у сибирской лягушек, обладающих только одним фенотипическим вариантом, рассматриваемые показатели совпадают с физиологическими особенностями носителей соответствующих аллелей полиморфных видов (R. arvalis и P. ridibundus). Таким образом, тогда как межвидовые различия в целом соответствуют филогенетической дистанцированности, фенотипические варианты, имеющие гомологичную или сходную наследственную основу, могут быть ближе по физиологическим параметрам к носителям сходных аллелей других видов, при этом существенно уклоняясь от средневидовой нормы.

Размер файла 168.39 KB
Скачать 22

Michael Noren & Erik Ahlander // Zootaxa 4853 (1): 2020: 099–108

As part of an investigation into the status of the near threatened Gotland grass snake, Natrix natrix gotlandica Nilson & Andrén, 1981, endemic to the island of Gotland, we discovered that Linnaeus’ type series of the common grass snake, Natrix natrix (Linnaeus, 1758), is comprised of specimens from three different currently recognized species. To stabilize the usage of the name Coluber natrix, we investigate Linnaeus’ type series, and a specimen which Linnaeus in 1741 examined west of the Swedish city of Nyköping is designated lectotype. The lectotype has since been lost, and a newly collected specimen from the same locality is designated neotype for Coluber natrix. The neotype is deposited in the herpetology collection of the Swedish Museum of Natural History in Stockholm, Sweden, catalog number NRM 8260.

Размер файла 1.24 MB
Скачать 23

Файзулин А.И. // Известия Самарского научного центра Российской академии наук, т. 24, № 5, 2022. С. 5 - 9

Приведены данные об истории изучения фауны и экологии амфибий Чувашской Республики. В настоящее время таксономический состав земноводных региона включает 11 видов. Подтверждено обитание вида гибридогенного происхождения - съедобной лягушки и двух криптических форм – «западной» и «восточной» озерной лягушки. Необходимы дальнейшие исследования географического распространения земноводных, фауны паразитов и трофических связей амфибий на территории региона.

Размер файла 177.71 KB
Скачать 50

Шабанов Д.А. // Природа, №4, 2011, С. 56 - 59

Размер файла 275.8 KB
Скачать 177

Savage, R. M. // Proceedings of the Zoological Society of London, 1934, 104: 55–65.

Размер файла 1.26 MB
Скачать 123

Darrel R. Frost, Taran Grant, Julián Faivovich, Raoul H. Bain, Alexander Haas, Célio F.B. Haddad, Rafael O. De Sá, Alan Channing, Mark Wilkinson, Stephen C. Donnellan, Christopher J. Raxworthy, Jonathan A. Campbell, Boris I. Blotto, Paul Moler, Robert C. Drewes, Ronald A. Nussbaum, John D. Lynch, David M. Green, Ward C. Wheeler // Bulletin of the AMNH, #297, 2006

The evidentiary basis of the currently accepted classification of living amphibians is discussed and shown not to warrant the degree of authority conferred on it by use and tradition. A new taxonomy of living amphibians is proposed to correct the deficiencies of the old one. This new taxonomy is based on the largest phylogenetic analysis of living Amphibia so far accomplished. We combined the comparative anatomical character evidence of Haas (2003) with DNA sequences from the mitochondrial transcription unit H1 (12S and 16S ribosomal RNA and tRNA[superscript Valine] genes, [approximately equal to] 2,400 bp of mitochondrial sequences) and the nuclear genes histone H3, rhodopsin, tyrosinase, and seven in absentia, and the large ribosomal subunit 28S ([approximately equal to] 2,300 bp of nuclear sequences; ca. 1.8 million base pairs; x [arithmetic mean] = 3.7 kb/terminal). The dataset includes 532 terminals sampled from 522 species representative of the global diversity of amphibians as well as seven of the closest living relatives of amphibians for outgroup comparisons. The primary purpose of our taxon sampling strategy was to provide strong tests of the monophyly of all "family-group" taxa. All currently recognized nominal families and subfamilies were sampled, with the exception of Protohynobiinae (Hynobiidae). Many of the currently recognized genera were also sampled. Although we discuss the monophyly of genera, and provide remedies for nonmonophyly where possible, we also make recommendations for future research. A parsimony analysis was performed under Direct Optimization, which simultaneously optimizes nucleotide homology (alignment) and tree costs, using the same set of assumptions throughout the analysis. Multiple search algorithms were run in the program POY over a period of seven months of computing time on the AMNH Parallel Computing Cluster. Results demonstrate that the following major taxonomic groups, as currently recognized, are nonmonophyletic: Ichthyophiidae (paraphyletic with respect to Uraeotyphlidae), Caeciliidae (paraphyletic with respect to Typhlonectidae and Scolecomorphidae), Salamandroidea (paraphyletic with respect to Sirenidae), Leiopelmatanura (paraphyletic with respect to Ascaphidae), Discoglossanura (paraphyletic with respect to Bombinatoridae), Mesobatrachia (paraphyletic with respect to Neobatrachia), Pipanura (paraphyletic with respect to Bombinatoridae and Discoglossidae/Alytidae), Hyloidea (in the sense of containing Heleophrynidae; paraphyletic with respect to Ranoidea), Leptodactylidae (polyphyletic, with Batrachophrynidae forming the sister taxon of Myobatrachidae + Limnodynastidae, and broadly paraphyletic with respect to Hemiphractinae, Rhinodermatidae, Hylidae, Allophrynidae, Centrolenidae, Brachycephalidae, Dendrobatidae, and Bufonidae), Microhylidae (polyphyletic, with Brevicipitinae being the sister taxon of Hemisotidae), Microhylinae (poly/paraphyletic with respect to the remaining non-brevicipitine microhylids), Hyperoliidae (para/polyphyletic, with Leptopelinae forming the sister taxon of Arthroleptidae + Astylosternidae), Astylosternidae (paraphyletic with respect to Arthroleptinae), Ranidae (paraphyletic with respect to Rhacophoridae and Mantellidae). In addition, many subsidiary taxa are demonstrated to be nonmonophyletic, such as (1) Eleutherodactylus with respect to Brachycephalus; (2) Rana (sensu Dubois, 1992), which is polyphyletic, with various elements falling far from each other on the tree; and (3) Bufo, with respect to several nominal bufonid genera. A new taxonomy of living amphibians is proposed, and the evidence for this is presented to promote further investigation and data acquisition bearing on the evolutionary history of amphibians. The taxonomy provided is consistent with the International Code of Zoological Nomenclature (ICZN, 1999). Salient features of the new taxonomy are (1) the three major groups of living amphibians, caecilians/Gymnophiona, salamanders/Caudata, and frogs/Anura, form a monophyletic group, to which we restrict the name Amphibia; (2) Gymnophiona forms the sister taxon of Batrachia (salamanders + frogs) and is composed of two groups, Rhinatrematidae and Stegokrotaphia; (3) Stegokrotaphia is composed of two families, Ichthyophiidae (including Uraeotyphlidae) and Caeciliidae (including Scolecomorphidae and Typhlonectidae, which are regarded as subfamilies); (4) Batrachia is a highly corroborated monophyletic group, composed of two taxa, Caudata (salamanders) and Anura (frogs); (5) Caudata is composed of two taxa, Cryptobranchoidei (Cryptobranchidae and Hynobiidae) and Diadectosalamandroidei new taxon (all other salamanders); (6) Diadectosalamandroidei is composed of two taxa, Hydatinosalamandroidei new taxon (composed of Perennibranchia and Treptobranchia new taxon) and Plethosalamandroidei new taxon; (7) Perennibranchia is composed of Proteidae and Sirenidae; (8) Treptobranchia new taxon is composed of two taxa, Ambystomatidae (including Dicamptodontidae) and Salamandridae; (9) Plethosalamandroidei new taxon is composed of Rhyacotritonidae and Xenosalamandroidei new taxon; (10) Xenosalamandroidei is composed of Plethodontidae and Amphiumidae; (11) Anura is monophyletic and composed of two clades, Leiopelmatidae (including Ascaphidae) and Lalagobatrachia new taxon (all other frogs); (12) Lalagobatrachia is composed of two clades, Xenoanura (Pipidae and Rhinophrynidae) and Sokolanura new taxon (all other lalagobatrachians); (13) Bombinatoridae and Alytidae (former Discoglossidae) are each others' closest relatives and in a clade called Costata, which, excluding Leiopelmatidae and Xenoanura, forms the sister taxon of all other frogs, Acosmanura; (14) Acosmanura is composed of two clades, Anomocoela (5 Pelobatoidea of other authors) and Neobatrachia; (15) Anomocoela contains Pelobatoidea (Pelobatidae and Megophryidae) and Pelodytoidea (Pelodytidae and Scaphiopodidae), and forms the sister taxon of Neobatrachia, together forming Acosmanura; (16) Neobatrachia is composed of two clades, Heleophrynidae, and all other neobatrachians, Phthanobatrachia new taxon; (17) Phthanobatrachia is composed of two major units, Hyloides and Ranoides; (18) Hyloides comprises Sooglossidae (including Nasikabatrachidae) and Notogaeanura new taxon (the remaining hyloids); (19) Notogaeanura contains two taxa, Australobatrachia new taxon and Nobleobatrachia new taxon; (20) Australobatrachia is a clade composed of Batrachophrynidae and its sister taxon, Myobatrachoidea (Myobatrachidae and Limnodynastidae), which forms the sister taxon of all other hyloids, excluding sooglossids; (21) Nobleobatrachia new taxon, is dominated at its base by frogs of a treefrog morphotype, several with intercalary phalangeal cartilages--Hemiphractus (Hemiphractidae) forms the sister taxon of the remaining members of this group, here termed Meridianura new taxon; (22) Meridianura comprises Brachycephalidae (former Eleutherodactylinae + Brachycephalus) and Cladophrynia new taxon; (23) Cladophrynia is composed of two groups, Cryptobatrachidae (composed of Cryptobatrachus and Stefania, previously a fragment of the polyphyletic Hemiphractinae) and Tinctanura new taxon; (24) Tinctanura is composed of Amphignathodontidae (Gastrotheca and Flectonotus, another fragment of the polyphyletic Hemiphractinae) and Athesphatanura new taxon; (25) Athesphatanura is composed of Hylidae (Hylinae, Pelodryadinae, and Phyllomedusinae, and excluding former Hemiphractinae, whose inclusion would have rendered this taxon polyphyletic) and Leptodactyliformes new taxon; (26) Leptodactyliformes is composed of Diphyabatrachia new taxon (composed of Centrolenidae (including Allophryne) and Leptodactylidae, sensu stricto, including Leptodactylus and relatives) and Chthonobatrachia new taxon; (27) Chthonobatrachia is composed of a reformulated Ceratophryidae (which excludes such genera as Odontophrynus and Proceratophrys and includes other taxa, such as Telmatobius) and Hesticobatrachia new taxon; (28) Hesticobatrachia is composed of a reformulated Cycloramphidae (which includes Rhinoderma) and Agastorophrynia new taxon; (29) Agastorophrynia is composed of Bufonidae (which is partially revised) and Dendrobatoidea (Dendrobatidae and Thoropidae); (30) Ranoides new taxon forms the sister taxon of Hyloides and is composed of two major monophyletic components, Allodapanura new taxon (microhylids, hyperoliids, and allies) and Natatanura new taxon (ranids and allies); (31) Allodapanura is composed of Microhylidae (which is partially revised) and Afrobatrachia new taxon; (32) Afrobatrachia is composed of Xenosyneunitanura new taxon (the "strange-bedfellows" Brevicipitidae (formerly in Microhylidae) and Hemisotidae) and a more normal-looking group of frogs, Laurentobatrachia new taxon (Hyperoliidae and Arthroleptidae, which includes Leptopelinae and former Astylosternidae); (33) Natatanura new taxon is composed of two taxa, the African Ptychadenidae and the worldwide Victoranura new taxon; (34) Victoranura is composed of Ceratobatrachidae and Telmatobatrachia new taxon; (35) Telmatobatrachia is composed of Micrixalidae and a worldwide group of ranoids, Ametrobatrachia new taxon; (36) Ametrobatrachia is composed of Africanura new taxon and Saukrobatrachia new taxon; (37) Africanura is composed of two taxa: Phrynobatrachidae (Phrynobatrachus, including Dimorphognathus and Phrynodon as synonyms) and Pyxicephaloidea; (38) Pyxicephaloidea is composed of Petropedetidae (Conraua, Indirana, Arthroleptides, and Petropedetes), and Pyxicephalidae (including a number of African genera, e.g. Amietia (including Afrana), Arthroleptella, Pyxicephalus, Strongylopus, and Tomopterna); and (39) Saukrobatrachia new taxon is the sister taxon of Africanura and is composed of Dicroglossidae and Aglaioanura new taxon, which is, in turn, composed of Rhacophoroidea (Mantellidae and Rhacophoridae) and Ranoidea (Nyctibatrachidae and Ranidae, sensu stricto). Many generic revisions are made either to render a monophyletic taxonomy or to render a taxonomy that illuminates the problems in our understanding of phylogeny, so that future work will be made easier. These revisions are: (1) placement of Ixalotriton and Lineatriton (Caudata: Plethodontidae: Bolitoglossinae) into the synonymy of Pseudoeurycea, to render a monophyletic Pseudoeurycea; (2) placement of Haideotriton (Caudata: Plethodontidae: Spelerpinae) into the synonymy of Eurycea, to render a monophyletic Eurycea; (3) placement of Nesomantis (Anura: Sooglossidae) into the synonymy of Sooglossus, to assure a monophyletic Sooglossus; (4) placement of Cyclorana and Nyctimystes (Anura: Hylidae: Pelodryadinae) into Litoria, but retaining Cyclorana as a subgenus, to provide a monophyletic Litoria; (5) partition of "Limnodynastes" (Anura: Limnodynastidae) into Limnodynastes and Opisthodon to render monophyletic genera; (6) placement of Adenomera, Lithodytes, and Vanzolinius (Anura: Leptodactylidae) into Leptodactylus, to render a monophyletic Leptodactylus; (7) partition of "Eleutherodactylus" (Anura: Brachycephalidae) into Craugastor, "Eleutherodactylus", "Euhyas", "Pelorius", and Syrrhophus to outline the taxonomic issues relevant to the paraphyly of this nominal taxon to other nominal genera; (8) partition of "Bufo" (Anura: Bufonidae) into a number of new or revived genera (i.e., Amietophrynus new genus, Anaxyrus, Chaunus, Cranopsis, Duttaphrynus new genus, Epidalea, Ingerophrynus new genus, Nannophryne, Peltophryne, Phrynoidis, Poyntonophrynus new genus; Pseudepidalea new genus, Rhaebo, Rhinella, Vandijkophrynus new genus); (9) placement of the monotypic Spinophrynoides (Anura: Bufonidae) into the synonymy of (formerly monotypic) Altiphrynoides to make for a more informative taxonomy; (10) placement of the Bufo taitanus group and Stephopaedes (as a subgenus) into the synonymy of Mertensophryne (Anura: Bufonidae); (11) placement of Xenobatrachus (Anura: Microhylidae: Asterophryinae) into the synonymy of Xenorhina to render a monophyletic Xenorhina; (12) transfer of a number of species from Plethodontohyla to Rhombophryne (Microhylidae: Cophylinae) to render a monophyletic Plethodontohyla; (13) placement of Schoutedenella (Anura: Arthroleptidae) into the synonymy of Arthroleptis; (14) transfer of Dimorphognathus and Phrynodon (Anura: Phrynobatrachidae) into the synonymy of Phrynobatrachus to render a monophyletic Phrynobatrachus; (15) placement of Afrana into the synonymy of Amietia (Anura: Pyxicephalidae) to render a monophyletic taxon; (16) placement of Chaparana and Paa into the synonymy of Nanorana (Anura: Dicroglossidae) to render a monophyletic genus; (17) recognition as genera of Ombrana and Annandia (Anura: Dicroglossidae: Dicroglossinae) pending placement of them phylogenetically; (18) return of Phrynoglossus into the synonymy of Occidozyga to resolve the paraphyly of Phrynoglossus (Anura: Dicroglossidae: Occidozyginae); (19) recognition of Feihyla new genus for Philautus palpebralis to resolve the polyphyly of ''Chirixalus''; (20) synonymy of "Chirixalus" with Chiromantis to resolve the paraphyly of "Chirixalus"; (21) recognition of the genus Babina, composed of the former subgenera of Rana, Babina and Nidirana (Anura: Ranidae); (22) recognition of the genera Clinotarsus, Humerana, Nasirana, Pelophylax, Pterorana, Pulchrana, and Sanguirana, formerly considered subgenera of Rana (Anura: Ranidae), with no special relationship to Rana (sensu stricto); (23) consideration of Glandirana (Anura: Ranidae), formerly a subgenus of Rana, as a genus, with Rugosa as a synonym; (24) recognition of Hydrophylax (Anura: Ranidae) as a genus, with Amnirana and most species of former Chalcorana included in this taxon as synonyms; (25) recognition of Hylarana (Anura: Ranidae) as a genus and its content redefined; (26) redelimitation of Huia to include as synonyms Eburana and Odorrana (both former subgenera of Rana); (27) recognition of Lithobates (Anura: Ranidae) for all species of North American "Rana" not placed in Rana sensu stricto (Aquarana, Pantherana, Sierrana, Trypheropsis, and Zweifelia considered synonyms of Lithobates); (28) redelimitation of the genus Rana as monophyletic by inclusion as synonyms Amerana, Aurorana, Pseudoamolops, and Pseudorana, and exclusion of all other former subgenera; (29) redelimitation of the genus Sylvirana (Anura: Ranidae), formerly a subgenus of Rana, with Papurana and Tylerana included as synonyms.

Размер файла 9.27 MB
Скачать 162

H. Christoph Liedtke, John J. Wiens &  Ivan Gomez-Mestre // Nature Communications. Volume 13: 7039 (2022)

Amphibians have undergone important evolutionary transitions in reproductive modes and life-cycles. We compare large-scale macroevolutionary patterns in these transitions across the three major amphibian clades: frogs, salamanders, and caecilians. We analyse matching reproductive and phylogenetic data for 4025 species. We find that having aquatic larvae is ancestral for all three groups and is retained by many extant species (33–44%). The most frequent transitions in each group are to relatively uncommon states: live-bearing in caecilians, paedomorphosis in salamanders, and semi-terrestriality in frogs. All three groups show transitions to more terrestrial reproductive modes, but only in caecilians have these evolved sequentially from most-to-least aquatic. Diversification rates are largely independent of reproductive modes. However, in salamanders direct development accelerates diversification whereas paedomorphosis decreases it. Overall, we find a widespread retention of ancestral modes, decoupling of trait transition rates from patterns of species richness, and the general independence of reproductive modes and diversification.

Размер файла 1.07 MB
Скачать 734

Oleksii Y. Marushchak, Oksana D. Nekrasova, Volodymyr M. Tytar, Nazar A. Smirnov, Oleksiy V. Korshunov, Mihails Pupins, Galyna I. Mykytynets, Arturs Skute, Klaus Henle and Hinrich Kaiser // Herpetology Notes, volume 14: 1239-1251 (2021)

Our study provides a review of colour anomalies in amphibians from Ukraine during the 20th and early 21st centuries. Observations including melanism, flavinism, leucism, and blue axanthism were assembled from the published literature (1909–2018) and during field surveys (2000–2017). Blue colouration was the most common abnormal variant (81.5%; n = 106), and colour anomalies were recorded in 13 of Ukraine’s 24 administrative regions (oblasts), mainly along the Dnieper River and in the Carpathian Mountains. The largest number of anomalies was found in the Poltava (26.5%) and Kyiv (20.4%) Oblasts. We also explored the relationship between abnormal colouration and environmental variables using a GIS framework. Correlations existed mainly with geographic location and temperature-related parameters (e.g., reference evapotranspiration), as could be expected for interactions of morphological or physiological anomalies. However, the Human Footprint, an integrated index of anthropogenic impact, was also important. The connection of colour anomalies and human activities shows once again the importance of amphibians as bioindicators for the early detection of pollution and other harmful effects in aquatic ecosystems.

Размер файла 2.49 MB
Скачать 357

Зарипова Ф.Ф., Файзулин А.И., Князев А.Е. // Экологический сборник 7. Труды молодых ученых Поволжья. Тольятти: ИЭВБ РАН, 2019. с. 176 -179

Размер файла 108.64 KB
Скачать 686

Северцова Е. А., Агильон Гутиеррес Д. Р. // Зоологический журнал, 2013, том 92, № 6, с. 707–717

Исследовано влияние загрязнения водоема свинец и железосодержащими сплавами на морфогенез головастиков травяной лягушки (Rana temporaria), остромордой лягушки (Rana arvalis) и серой жабы (Bufo bufo). Показано, что во время кормления частички металла поступают в организм головастика. Это оказывает существенное влияние на размерные характеристики головастиков. Загрязнение водной среды железом несколько увеличивает общие размеры головастиков, по сравнению с их размерами в контроле. В условиях имитации загрязнения свинцом происходит торможение ростовых процессов, в результате чего головастики оказываются значимо мельче, чем в контрольной группе. Загрязнение водоема металлсодержащими сплавами не влияло на пропорциональность развития.

Размер файла 1.07 MB
Скачать 236

Trevor J. C. Beebee // Journal of Herpetology, Vol. 48, No. 1, 2–12, 2014

Agricultural intensification, starting during the SecondWorld War, precipitated declines in all seven native species of amphibians in Britain. Problems in the United Kingdom (U.K.) therefore predated recognition of global amphibian declines and were due to relatively simple causes, notably habitat modification and destruction. Pesticides, acid rain, ultraviolet radiation, climate change, and disease have thus far proved relatively minor issues. Amphibian conservation started in the 1970s, initially with status surveys, but by the 1980s research into habitat requirements and proactive management was underway, particularly for the rare Bufo calamita (Natterjack Toad). The relatively widespread Triturus cristatus (Great Crested Newt) was given the same legal protection as B. calamita in 1981 due largely to declines elsewhere in Europe. This protection has become problematic for conservationists on account of the many sites with this newt that regularly come under threat from development. Additional difficulties identified in the 1990s included serious impacts of road mortality on Bufo bufo (Common Toad) and inbreeding in urban populations of this species and of Rana temporaria (Common Frog). A previously unrecognized rare native, the ‘‘northern clade’’ of Pelophylax (formerly Rana) lessonae (Northern Pool Frog) became extinct in the early 1990s but was reintroduced in the 2000s. In the past 4 decades conservation efforts have stabilized, although not increased, the U.K. B. calamita population, but some of the widespread species are still declining, albeit at a slower rate than in the postwar period. Effective methods for amphibian conservation are now available and the outstanding question is whether there will be sufficient funding to make greater gains in future.

Размер файла 768.39 KB
Скачать 187

Банников А.Г. // Ученые записки Московского городского педагогического института имени В.П. Потемкина. т. XXXVIII, 1955. С. 219 - 223

Размер файла 1.72 MB
Скачать 259

Леонтьева О.А. // Животный мир Европейской части России, его изучение, использование и охрана: Межвузовский сборник научных трудов. - М.: МОПИ им Н.К. Крупской, 1991. С. 98 - 110

Размер файла 3.83 MB
Скачать 221

Вершинин В.Л. // Известия Самарского научного центра Российской академии наук. 2014. Т. 16, № 5(1). 344 - 348.

В статье проводится анализ многолетних данных по функциональной экологии сообществ амфибий, в градиенте урбанизированной среды. Оценивается ряд функциональных параметров, характеризующих устойчивость биоты на разных иерархических уровнях организации (особей, популяций, сообществ). Оценивается преадаптивное значение физиологической стороны популяционного полиморфизма, ряд особенностей трофических связей урбоценозов, роль репродуктивных особенностей в диверсификации морфогенеза рассматриваемых видов, синергические эффекты.

Размер файла 194.53 KB
Скачать 369

Чернецкая, А. Г. Асипчик, М. Н. // Сахаровские чтения 2018 года: экологические проблемы XXI века. Материалы 18-й международной научной конференции, 17–18 мая 2018 г., г. Минск, Республика Беларусь : в 3 ч. – Минск : ИВЦ Минфина, 2018. – Ч. 2. – С. 181-183.

Антропогенная трансформация условий обитания накладывает свой отпечаток на структуру популяций. Особое внимание в последние годы уделяют вопросам специфики существования популяций на антропогенных территориях. Важнейшей составляющей в мониторинге природных популяций является изучение возрастной структуры.

Размер файла 429.56 KB
Скачать 313

Яндекс.Метрика

Природа Республики Мордовия

Мордовский государственный заповедник